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A linear and irrotational model is constructed to represent the formation of water 
waves by ground motions of a sloping bed. A survey of the constant-depth case, given 
first, helps in understanding the mechanism of formation, and, in this oversimplified 
case, wave propagation away from a source, which is usually very asymmetric. The 
importance of asymmetry, which may produce trapped waves, is illustrated by an 
estimate of the propagation in a three-dimensional case. The formation of waves by 
a ground motion on a slope is then studied in detail. The problem is reduced to linear 
integral equations of the first kind. Using an inversion technique, one constructs a 
source-response pair in which the source is ‘&-like’ and the response is close to that 
which would be found if the depth was constant around the source. A general 
approximate solution is then derived, in both the two-dimensional and three- 
dimensional cases. Results for the sloping-bottom case are given for small times. They 
give initial values of surface displacement. They also enable one to  determine the 
important physical parameters in the ground motion and to evaluate the efficiency 
of wave production. 
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1. Introduction 
The problem of water waves produced by ground motions is of theoretical as well 

as practical interest in several cases. The mechanisms of production can be roughly 
divided into three groups. 

( i )  The best known case is that of a source that is a seism, i.e. a very-large-scale 
short-duration disturbance of the ground. Tsunamis, which are thus generated, have 
been the object of numerous studies, both of experimental and of theoretical 
character (see e.g. Van Dorn 1965; Murty 1977 ; Hammack 1973; Hammack & Segur 
1978). Throughout the mathematical studies, irrotational motion is assumed, and the 
source is most often represented as a disturbance of the free surface, which is readily 
related to the ground disturbance if an  average constant depth h is taken in the source 
region, transients are neglected, and the linear ‘small-amplitude ’ model is used. The 
propagation from the source is treated either through linear models or through 
‘weakly’ nonlinear models in which the depth is essentially assumed to be much 
smaller than the ‘average’ wavelength, so that the limiting velocity c = (gh)? holds 
locally for the most important waves. 

(ii) The other well known case is that of a centred localized source due for instance 
to an explosion. Again the theory starts from assuming irrotational motion. When 
the source is also represented as a disturbance of the free surface, the model reduces 
to a general model for water waves produced by explosions, which is used similarly 
to represent an explosion above water, inside water, or underground (Kranzer & 
Keller 1959; Kajiura 1963; Le M6haut6 1971 ; Noda 1971) and reproduces observed 
results with less than 30% error. This proves that the drastic approximation 
consisting of neglecting direct impulses to water by a submarine explosion is reliable 
(for rough wave-height evaluations). It is certainly much more reliable for under- 
ground motions, where the displacements and velocities are several orders smaller. 
Representing the ground motion by a free-surface disturbance is valid, as in case (i), 
if transients are neglected, the linear ‘small-amplitude ’ model is used with constant 
depth, and if the ground motion is a vertical disturbance. If it is a lateral one, the 
equivalence is much less obvious. The propagation from the source is treated by a 



Water waves produced by ground motions 

linear model, and the wave packet is well described by using asymptotic approxi- 
mations to take into account dispersion. Nonlinear models are of course necessary 
near the coast. 

(iii) The third case has received little theoretical study. It is that of water waves 
a t  coastal sites, due to  offshore faulting, submarine slumping or underground 
explosions. Such phenomena have been observed in several historical events (Miloh 
& Striem 1976, 1978) and recently illustrated by the hydraulic phenomena observed 
in French Polynesia (July 1979) and in Nice (October 1979). As in the two preceding 
cases, the phenomenon begins with a ‘long’ wave, and its period, which obviously 
is related to the extent of the source, can be any figure between 30 s (i.e. twice that 
of Pacific Ocean swell) and some twenty minutes (i.e. the order of a seismic tsunami). 
But unlike the preceding cases, the phenomenon is very strongly asymmetrical, both 
in its generation (e.g. blocks falling down along the slope from the coast), and in the 
observation conditions (along the coast). Modelling in the ‘source region’ with a 
constant depth or using a long-wave approximation is not often appropriate, because 
in many cases of interest, the observed length a of the wave packet is large, but not 
much more than the average depth K under it,  and definitely smaller than the 
maximum depth H at the bottom of a 1Oo-5O0 slope. A good theoretical study of 
two-dimensional long-wave generation, with a % K, and neglecting dispersion effects, 
is given by Tuck & Hwang (1972). I n  addition, a few reduced-scale experiments in 
basins are relevant (Wiegel 1955; Prins 1958). However the relevance in case (iii) of 
theoretical models devised for cases (i) and (ii), is an open question. Computer 
calculations with asymptotic methods are more easily applied to propagation 
problems than to  generation problems. I n  fact, we assume that the propagation is 
analysed by these means and that generation is the only new theoretical problem. 

I n  the present paper, we try to describe the phenomena of case (iii) by means of 
models in which the main points are preserved, but which are sufficiently simplified 
that approximate formulas can be obtained to give a crude description of the wave 
generation. Our starting point is an irrotational linear ‘ small-amplitude ’ model 
solving the Cauchy problem, like the Kranzer-Keller model in case (ii). This model 
is applied to ground motions of a submarine hill, which is, for convenience, 
two-dimensional only, i.e. invariant by translation along a direction ( 0 2 )  parallel to  
the (straight) coast, Ox and Oy being respectively the horizontal and vertical 
directions normal to Oz. The three-dimensional ground motion is chosen as any small 
amplitude of the form b ( z )  A(x,  t ) ,  and the disturbance i t  yields is also linearly 
described. The model is introduced and its equations are derived in $2. Solutions at 
constant depth are then obtained and discussed, in order to  recall some points about 
propagation (which we shall not study on variable depth) and to show for certain 
sources asymmetric effects, which give at short distances a ‘diffraction lobe’, and to 
rule out possible extensions of our study, in particular nonlinear equations. The 
approximate solutions for variable depth h(x), with lh’(x)l < 1, are studied in $3. They 
enable us to determine the important physical parameters in the ground motion with 
regard to wave generation. These solutions are derived by following the intuitive idea 
that the generation mechanism is locally very close to the one occurring in water of 
constant depth equal to the local depth. The method is justified by using an unusual 
approach that starts from an ill-posed formulation of the problem, and regularizes 
it (for ill-posed problems in geophysical sciences see Sabatier 1978,1979). For the sake 
of clarity, complicated details are treated in the appendix. The last section ( $ 5 )  is 
a short discussion of the general relevance of the model with a brief survey of 
assumptions. Experimental results will be published later. 

29 
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2. The linear model 
2.1. The model 

The straight horizontal coast is directed along the axis 0%. Let Oy be the vertical axis, 
pointing upward, and Ox the horizontal axis, pointing outward from the coast, and 
contained in the sea surface a t  rest. Let Oz be chosen so that Oxyz is right-handed. 
We assume that the ground shape is described a t  rest by the function y = -h(x), and 
during the ground motion by y = -h (x )  + A ( x ,  z ,  t). We assume in addition that h(x )  
and A ( x ,  z ,  t )  are continuously differentiable, except for a fixed vertical boundary 
( x  = 0, y E [ -h(O), 01) at the coast. Now the small-amplitude and irrotational-flow 
linear model is described by the following equations for the velocity potential (Stoker 

(2.1) 1957; Bouasse 1924): A@ = 0 ( X  > 0 ;  -h(x) < y < O ) ,  

a@ 
- = 0 ( x  = 0 ;  -h(O) < y < O ) ,  a x  

a@ a A ( x , z , t )  

aw am 
-+g- = 0 (x > 0 ;  y = O ) ,  
at2 a y  

( x  > 0 ;  y+h(x )  + O + ) ,  
am -+h’(x) - = 
aY a x  a t  

= o  ( x > O ; y = O ; t = O ) ,  
a @  a 2 0  

a t  at2 
-=- 

whereas the wave amplitude is given by 

r = - g - ’ -  a@ ( x > O ; y = O ) .  
a t  

(2.4) 

It is convenient to continue the problem into x < 0 by symmetry with respect to 
the plane x = 0; h(x) and A ( x )  becoming even continuous. 

Assumption 0. For the sake of simplicity, we shall also assume that h(x) so defined 
has continuous derivatives up to and including the fourth order, that  i t  increases 
steadily from x = 0 to x = x,, where i t  reaches the value h,, and that i t  is constant, 
h(x)  = h,, for z 2 x,. This assumption is convenient to simplify the analysis, but 

is not necessary. Let us introduce Y( . , t)  = @( . , ?)&,where Y is a solution of (2.1), 

(2.2), completed by 
ay ay 
-+h’(x) - = A ( x ,  z, t )  (y = -h(x)), a Y  a x  

a 
Y( . , t) + g  ( t  -7) - Y( . , 7 )  d7 = 0 ( y  = 0) .  1 a Y  

(2.3’) 

(2.4‘) 

while the surface deformation simply reduces to [aY ( . , t ) / a  
There are several ways of handling this problem in order to derive an approximate 

solution. For a first approach, we start from two working assumptions. 
Assumption A The physical problem from A to r,~ is well-posed in C(R) in 

Hadamard’s sense. This means physically that a small deviation in a fall or a seism 
does not result into a drastic modification of the pattern of water waves, and that 
the whole hydraulic phenomenon is uniquely determined by giving A ( x ,  t ) .  

Assumption B The solutions of the linear problem are close to the corresponding 
solutions of the physical problem. 
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With these assumptions, i t  is suficient to determine a value of r,~ that  corresponds 
to a source B(x , t )  close to A(x , t ) ,  and to estimate the accuracy of our result by 
evaluating the difference between A and B .  A simple approach makes use of the 
Fourier transform. We seek a function Y ( x ,  y, z ,  t )  of the form 

where ‘ k ( r ,  s, y, t )  is locally C, as a function of y, and belongs to L,(R x R), together 

with a2!f’/ay2 and with ( r2+s2) ’k,  as a function of r and s, for any physical y. 
Equations (2 .2 )  and (2 .1 )  are fulfilled if q ( r ,  s, y, t )  is an even function of s and satisfies 
the differential ecluation 

Hence, taking into account (2 .6 ) ,  we write down ‘k in the form 
a( r ,  s, t )  cosh [ky] + f ( r ,  s, t )  k-l sinh [Icy], where 

k = 2n(r2 + s2)i, (2 .9 )  

and f ( r ,  s, t )  is the inverse Fourier transform of the surface deformation q(x, y, t ) .  The 
condition (2.4’) is fulfilled if ,.‘ 

a(r,  s, t )  = -g ( t - 7 )  f ( r ,  s, 7 )  d7 = ‘ k ( r ,  s, 0 ,  t ) .  J, (2 .10)  

Finally, substituting Y into (2.3’) and Fourier-transforming the result, we obtain the 
integral equation 

ds exp [ -2inszj  (cosh [kh(x)] + 2insh’(x) k-l sinh [kh(x) ] )  f ( r ,  s, t )  { 
+a 

+ ( k  sinh [kh(x ) ]  +Binsh’(z) cosh [ k h ( x ) ] )  g ( t - 7 )  f ( r ,  s, 7 )  d7] 

= lI exp [2inrzl ~ ( x ,  z ,  t )  dz .  (2.1 1 )  

Hence, if for some source A ( x ,  y, t ) ,  (2 .11)  has a solution T(r,  s, t )  such that ‘ k ( r ,  s, y, t )  
fulfills the above conditions as a function of r ,  s and y, its Fourier transform Y ( x ,  y, z ,  t )  
solves the system (2 .1 ) ,  (2 .2 ) ,  (2 .3’) ,  (2.4’),  and the surface deformation is the inverse 
Fourier transform of f .  

For the sake of simplicity, we shall only study here the ‘separable’ case, where 
A(x ,  z ,  t )  = b(z) A ( x ,  t ) .  Setting then f ( r ,  s, t )  = b ( r )  f ( k ,  s, t ) ,  (see 2.9), we see that (2 .11)  
becomes in this case 

J ds exp [ -2insxl (cosh [kh(x)]  + 2insh’(x) k-l sinh [ k h ( x ) ] )  i j(k,  s, t )  
-m { 
+(k sinh [ ~ h ( x ) ] + 2 i n s ~ ( x )  cosh [kh(x)J)g  ( t - ~ ) i j ( k , s , 7 ) & 7  = A ( x , t ) .  (2 .12)  c 

I n  particular, if the problem is translation-invariant along Oz (‘ two-dimensional 
case), b(r) is d( r ) ,  and (2 .12)  simply reduces to 

ds exp [ - 2insxI (cosh [2nsh(x)] + ih’(x) sinh [2nsh(x)])  f ( s ,  t )  
rt 

+m 

> 
+2nsg(sinh [2nsh(x)]+ih’(x)  cosh [2nsh(z)])J-(t-~)?j(s,7)d7 = A(x,t). (2.13 

0 i 
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2.2. Mathematical remarks 

The conditions imposed on $(r ,  s, y, t )  restrict the set d of sources for which the 
method gives an exact solution. This is easily seen. Since s2$( . , s) must belong to L2( R) 
for any physical y, so must s2 exp [ k h , ] f ( k ( s ) , s , t ) .  Suppose now that h(x) can be 
continued in a domain 9 of the complex plane @ as a holomorphic function. For any 
point x E @ such that IRe h(x)l+ Im x < h,, the integral on the left-hand side of (2.12) 
converges absolutely and uniformly, and yields an analytic function of x. There is 
a t  least one open set 9 in @, containing one open interval of R, and made of points 
satisfying this inequality. Thus, in this case, the sources A(x ,  t )  for which our method 
gives an exact solution cannot be chosen arbitrarily in C(R) but only in a special set 
of holomorphic functions. In  other words, our formulation (2.12) of the problem is 
ill-posed in any general set of sources like L, or G. This, however, need not prevent 
us from using this method to  obtain an approximate solution for an arbitrary source 
A ,  since the assumption A and B enable us to proceed, provided that we find in d 
a good approximation of A - and we shall see that this is possible. One may wonder 
whether the ill-posedness of (2.12) (or (2.13)) when this integral equation is considered 
as a proper formulation of the linear problem (2.1)-(2.4’), is related to  the fact that 
we have constructed harmonic functions not only in the physical range but also 
outside it (unless h(x) is constant) or whether i t  is related to  some intrinsic ill-posedness 
of the linear problem. In fact, the same equations can be obtained by using potential 
theory (for references see Courant & Hilbert 1962). Let us show the point on the 
two-dimensional case, a t  t = O + ,  for a source of the form A ( x ) @ ( t ) ,  where @ is the 
Heaviside function (this case gives the result in the conditions called ‘sudden 
approximation ’). The mathematical problem is the mixed boundary-value problem 
defined by (2.1), (2.2), (2.3’) and (2.4’) for t = 0. Y is obtained as the potential of a 
single-layer distribution on y = -h(x) and its symmetrical one on y = h(z)  

(2.14) 

The jump-discontinuity theorem yields the condition on CT and ~ ( x ,  0+) 

It is possible to check that for ITEL,(R) ,  Y is such that the Dirichlet integral 
jgrad Y .grad Y converges. If we seek Y in the class of functions for which the 
Dirichlet integral over the domain -h(x) < y < 0 converges, this solution is unique 
(hint: apply Green’s formula). Hence, the solution of (2.1), (2.2), (2.3‘), (2.4’) at t = O+ 
is the solution of (2.15) if i t  exists. Existence of a solution, and its stability with 
respect to perturbations of A(x) ,  are proved for the equations corresponding to (2.15) 
in the case of a finite basin, in 5A.7 of the appendix. We shall not study the problem 
more generally. Notice now that from (2.16) we can calculate the inverse Fourier 
transform of 7 :  

(2.17) 
+m 

~ ( 6 )  exp [ - 2nlslh(6)1 exp [2ins5] dc. 
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On the other hand, the result of our ‘Fourier method’ is given by the first part of 
(2.13): 

+m 

ds exp [ - Sinsx] (cosh [2nrsh(x)] + ih‘(x) sinh [2nsh(x)l} f ( s )  = A(x) .  (2.18) 

From our analysis, we have that f ( s ) ,  as given by (2.17), has no reason to  belong to 
the class of functions for which (2.18) makes sense. But suppose now that (i) 
sup Ih’(x)l < 1 and (ii) that we replace f by exp [ -.rrb2s2] f ( s ) ,  substitute i t  into (2.18) 
and take the limit as b goes to zero. For any positive b, we can commute the 
integrations on s and 6 and calculate exactly the integrals on s. Thanks to  the 
inequality on lh’l (see gA.2 of the appendix), these integrals go over, in the limit b = 0, 
to the sum of ‘Dirac functions’ and continuous functions, and integrating on 6 we 
obtain the result (2.15) exactly. Hence we learn that (2.18) can be obtained without 
using the Fourier method, without continuing $ outside of the physical domain, and 
that i t  applies thus to a very large class of boundary conditions, provided this 

In  the general case, using single- and double-layer potentials enables one to 
construct integral equations (Fredholm-type of the 2nd kind for space variables and 
Volterra-type in time) which yield the general equation (2.13) by the trick described 
above. However, they are difficult to  study (because of non-compactness for 
unbounded domains, singularities a t  corners for truncated domains). This is why we 
prefer to use (2.13), since we only need approximate results, and with assumptions 
A and B, this is sufficient for deriving approximate sources and the corresponding 
responses. 

s_, 

convenient regularization is applied ( f ( s )  + lim . . . e-ns2b2 4s)). 
b+O 

2.3. Fundamental sources and their approximations 

The problem is now reduced to solving (2.12) and (2.13), and evaluating the 
corresponding surface deformation. Since the formula (2.12) is a linear homogeneous 
relation between A and f ,  or q ,  it  is sufficient to know a Green function, i.e. the 
response do q’(A,  b, x,; x, z ,  t ) ,  or its transform do f ( A ,  b, 2,; k, s ,  t ) ,  for ground motions 

where s(x,x,) = d,S(x,-x), and do is a certain length. The total response to a finite 
superposition of sources like (2.19) is Xi di q’(A, b, xi; x, z, t ) ,  and that to a continuous 
displacement is 

q ( A , b , x ; z , t )  = ~ o ~ q ~ ( 4 , b , ~ o ; ~ , z . ~ ) ~ ~ o  (2.20) 

Now, our general strategy, which is inspired by inversion theory, is to seek 
responsesource pairs in which the source d(x,  2,) is not necessarily a S-function 
S(x-xo) ,  but ‘looks like’ a S-function, this meaning that, for any ‘physical’ ground 
motion A(x ,  t ) ,  the function x(x, t )  = ss’(x, x,) A(x,, t )  dx,  is close to  A(x ,  t )  : for 
instance [ [ A  - All L, is small. Clearly IIA sup Ilk- A 11 is a way to appraise the ‘S-ness ’ 
of d ( x ,  2,) (‘S-ness’ has been used by Backus & Gilbert 1967). But, if s’(x, 2,) is the 
sum of a narrowly peaked function (peak a t  x = x,, area 1, width 6) and a small (maybe 
oscillating) function e(x ,  x,), 11el1 and b altogether also give a measure of this ‘S-ness’. 
Let q(A,  x, x,) (or its Fourier transform) be the ‘response’ to s’(x, x,) A(x,, t ) .  Because 
of the linearity, the response to x(x, t )  is simply 

(2.21) 
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Thanks to the assumptions A and B, the physical response is close to ~ ( x ,  t )  if X(x, t )  
is close to A ( z , t )  and thus the 6-ness of s’(x,xo) is a measure of quality for the 
approximation given by ~ ( x ,  t ) .  

For solving (2.12) and (2.13), this approach can be used either in a general way or 

by considering first the part that  does not contain (‘truncated equation ’) and then 

iterating on time. This method, used below, is easy t o  manage because of two results, 
which are proved for the truncated equation in tjtjA.1, A.2 of the appendix, and where 

J1: 
P(h)  = SUP {Ih’(x)L h,lh’’(x)l). 

X € R  

Result I .  It is possible to  find a pair of functions source sb (x ,xo ) ,  and response 
fi(s,xo), depending continuously on b,  in which ~ $ E X ( R )  (8 = space of C, functions 
going to zero faster than any power of x as x +co - the so-called ‘tempered’ 
functions), and 6b(x, zo) = 6(z, xo) +eg(x, xo), such that &(x,  xo) goes over to 6(z-xo)  
as b goes to zero, and eE(x, xo) goes over uniformly to a bounded function e(x ,  xo), 
whose norm as an L, kernel is O ( y ( h ) ) .  Thus, for small b,  the 6-ness of this source is 

Result I I .  The limit response $ ( x , x o )  is exactly that which would correspond to 
a &-source a t  x = xo if the depth was constant and equal to  h(xo). Thus, this first 
sourceresponse pair corresponds to  our physical intuition. From this first pair, it  is 
possible to  construct ‘better’ pairs with a better 6-ness for the source. 

A way to do it,  which can result in a complete solution of the problem, is to iterate 
on e and on t .  This is explained in tjA.1 and achieved in 5tjA.4 and A.5 of the appendix. 
Here we only show our point for the iteration algorithm on 6. The algorithm is 

O(P(h) 1. 

+m 

TT(s, xo) = f $ (s ,  xo)-J TT-’(s, x’)eb(x’, z0) dx’, (2.22) 

starting a t  n = 1 ,  stopped a t  n = N ,  and corresponding on one hand to the algorithm 

--a) 

(2.23) 

for the response, and to  the algorithm 

for the source, beginning a t  eg(x, x’) = eb(x, x’). For fixed N ,  b can be chosen so small 
that the free term in the right-hand side of this algorithm is negligible. Using the 
bound for the L, norm of e(x’, xo), we conclude that the L, norm of eg(x, xo) is O ( p n ) .  
This proves our point for small p(h ) .  For any non-vanishing b,  and any finite N ,  
#(s, xo) is a tempered function of s, so that <D is too. All the derivations which led 
from the differential problem (2.1)-(2.6) t o  its integral formulation are henceforth 
justified and r$(x,x0) is a solution of the linear problem. 

It is clear that any inversion method applied to the integral equations (2.13) or 
(2.18) would also yield approximate sources. It can be used as well to  solve first the 
truncated equation and then iterate on time. In  a particular problem with large p ( h )  
(unsmooth bottom), a well-chosen method may give better results than the present 
one. But i t  has to be specially adapted to the problem, must be dealt with by 
computers, and does not yield a general closed formula. But closed formulas are 
essential in real problems because they are the first guide for inferring source 
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parameters from the observed wave pattern. More precise numerical methods are 
useful in the next step. 

I n  the case described by (2 .18) ,  and with the assumption 0, the sequence of sources 
e t  yield arbitrarily good approximations of ‘P, this reflecting the well-posedness of 
the problem and its regularized formulation. This well-posedness is preserved through 
the successive time iterations. But even if the property fails with weaker assumptions, 
the algorithm (2.22)-(2.24),  as well as those given in the appendix, and several other 
inversion methods, are able to improve source-response pairs in a finite way. 

3. Main features of the propagation at constant depth 
I n  the case h(x) = h, the integral transform in the left-hand side of (2 .13)  simply 

reduces to a Fourier transform, which can be inverted, yielding a Volterra equation 
for Q(k, s, t )  : 

Q ( k , s , t ) + g k  tanh [kh] ( t - 7 ) Q ( k , s 9 7 ) d 7  = a ( s , t ) ,  (3 .1 )  1 
where a(,, t )  is the inverse Fourier transform of A ( x ,  t ) .  Notice that physics implies 
A ( z ,  0) = [aA(x, t ) / a t ] , , ,  = 0 (system a t  rest a t  t = 0 and finite accelerations) - and 
similarly for A(s, t ) .  The Volterra equation (3 .1 )  can be exactly solved if the source 
is (2 .19 ) ,  and we obtain 

a 
f ( A ,  so; k, s, t )  = 2 sech [kh] cos [2nsx,] cos [ w , ( t - ~ ) ]  - A(z, ,  7 )  dr, (3 .2 )  

a7 

where o , ( k )  = (gk  tanh [kh]); .  (3 .3 )  

So as to  get a feeling of the phenomenon, we may assume that the ground motion 
duration is so short that dA(x,,r)/a7 can be replaced in ( 3 . 2 )  by A(x,)&(7).  I n  the 
following, this will be called the sudden approximation. Then it follows from (3 .2 )  
that 

+cos [2ns(s-x0)]} sech [kh] cos [ (gt2k tanh Lkh]):], (3.4) 
where x, and A have been omitted in the labels of 7’. The two terms (with x+xo) , 
of ~ ’ ( x ,  z,  t )  are obviously the reflected wave T,I;E(Z, z ,  t )  and the direct wave 7b(x ,  z ,  t ) .  
A simple two-parameter representation of b(z) is b(z) = p2((p” + z2)- ’ ,  which gives 
b(r) = Pexp [ - 2 n p r ] .  The length /3 is a measure of the extent’of the ground motion 
parallel to the coast. The total volume of the displacement is nd ,  A(x, )P ,  (obviously 
the same for the ground motion and for the surface displacement, owing to the 
incompressibility assumption). Making p -+ 00, the problem goes over into a two- 
dimensional one, i.e. i t  becomes translation-invariant along Oz,  and 

7D@9 t )  = w ( ~ 0 ) 9 , ( ~ - - 0 ) ~  (3 .5 )  

cos [ku] sech [kh] cos [gt2k tanh [kh])?] dk .  ( 3 . 6 )  
where 

g,(u) = 2 r - l  JOW 
Let us now sketch some features of the wave propagation, so as to see where the source 
asymmetry may be important. 
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3.1. Two-dimensional case, &-function source and sudden approximation 

We evaluate (3.6). Let us first try using the stationary-phase approximation. 
The formula (3.6) contains 4 oscillating exponentials with phases 
$& (s, x) = - 2ns(xo-x( wo t .  Only $+(s, x) can be stationary, and its derivative is 
2n[t c(s)- /xo-x(] ,  where 

c(s) = (2n)-1w0(27rs) {(2s)-’+ 2n h(sinh [4nsh])-l) (3.7) - (gh): [ 1 - 2n??h2] (2nsh 3 1 ) ( 3 . 8 ~ )  

- L ( q  (27rsh B 1). 
2 2ns 

(3.8b) 

As s goes from 0 to CQ, c(s) decreases monotonically from co = (gh)i to 0. Thus the 
stationary-phase equation Ix-xoJ = tc(s) has no solution for lx--xoI > co t ,  and only 
one, so, for smaller Ix-xoI. I n  the stationary-phase method, one concludes that the 
propagated waves reach x at t = c~’(z-z,(. For larger times, c (s )  is replaced by 
c(so) + ( s -  so)c’(so), and the Gaussian integral is calculated between - 00 and + 00.  

Results are reliable if both $+(so, x) and tsi lc’(so)l are large. These conditions, together 
with the approximations ( 3 . 8 ~ )  or (3.86), hold in some parts of the wavetrain, for 
instance in the following. 

3.1.1. Wavetrain tail (gt2(x-xoJ-1 9 1; cotlx-xol-l 9 1). The method yields wave 
amplitudes smaller than 0-4 A(xo) (g t2 ) i  (x - xo( -3. 

3.1.2. First waves at large distances. Let 6 = 1 -~x-xo~(cot)-l.  Using ( 3 . 8 ~ )  and the 
stationary-phase method is possible if the two conditions [ 4 1 and [ k o t / h  9 1 are 
simultaneously satisfied. Then nsoh - (it):, and 

7/$(x,t) - ~n- t (A(x , ) [ (g[) thc , t ] - :  cos [=““t[+ 3 h  1 . (3.9) 

The striking difference between this result and the corresponding one of the 
Kranzer-Keller model is its dependence on the distance d from the source, i.e. 1z-x01 
(or cot) .  This dependence is here as d-4, whereas in the K.K. axial model it is as d- l ,  
an obvious consequence of the problem symmetries. 

3.1.3. First waves at short distances and short times. The method does not apply to 
deriving them, although they are the most-important ones. A more general asymptotic 
method using Airy functions can work, as will be seen in $32.1.  We give here only 
a very rough estimate, which is obtained by neglecting dispersion (c(s) = co). The 
result is 

r b ( ~ ,  t )  - tA(x0)h-l  sech [ ~ n h - ’ ( ) r t - ~ ~ ~ - ~ ~ t ) ] O ( ~ x - x ~ ~ - ~ ~ t ) ,  (3.10) 

where 0 is the Heaviside function. This leading term carries more than half of the 
source volume. It shows that even a &function source yields but a very smooth water 
deformation. 

Combining (3.8), (3.9), and (3.10), we can ‘follow’ the phenomenon and see the 
single wave transformed into many, according to the general dispersion that is 
implied by c(s). Near the coast we also have to take the reflected waves into account. 

3.1.4. The rejected waves. The reflected term r,& is given by (3.5), with x+xo instead 
of x-xo. Far from the coast, the direct and the reflected wavetrains are thus 
completely shifted. Near the coast (because of our total reflection assumption), the 
wavetrains are superposed, so that the reduced amplitude a t  x = 0 and t = c;lx0 is 
twice the direct one. 
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3.21 Two-dimensional case, arbitrary source, and sudden approximation 

For A(x,  t )  = A ( x )  @(t ) ,  the response is obtained by integrating (3.4). This yields in 
the three-dimensional and two-dimensional cases 

q ( x , z , t )  = 4 d r d s S ( r ) d ( s )  cos [2nrz]cos [2nsx]  sech [kh] cos [two(k)], (3.11) jomjom 
ds a(s) cos [2nsz] sech [2nsh] cos [tw0(2ns)] (3.12a) 

(3.12b) 

where F is smooth, even and Gaussian-looking. Then 7 again can be written as the 
sum of a direct term vD (function of x- xl) and a reflected one vR (function of x + xl), 
with 

rD(x, t )  = 21L jOm ds sech [Znsh] cos [2nslx-xll]P(ls) cos [tw(2nrs)], (3.13) 

where P is the Fourier transform of F .  The difference between (3.13) and (3.5) lies 
in the 'non-oscillating ' function, sech [2nsh], being now multiplied by ~ ( Z S ) .  Hence 
the analysis is not different. The cases that correspond to those of $$3.1.1 and 3.1.2 
are ruled by the same formulas, except that A(xo) is replaced by ZLP(lso). Thus the 
wave amplitude for first waves at large distances depends on as €JiI/nh]. This 
function is not usually monotone, so that the main wave a t  large distances is not 
usually the first one, and its rank increases with the distance )x - xll. Let us now study 
more deeply the following case, which corresponds to that of $3.1.3: 

3.2.1. First wabes at short distances and short times. New points appear if the source 
width 1 is definitely larger than h. Because of F-smoothness, we expect that P vanishes 
rapidly for values of s 2 1-l, so that the validity range of the non-dispersive 
approximation increases considerably. It yields 

qD("> t ,  - iL IG( lx -x l l - c~ t )  +G(lx-x , (  +cot)], (3.14) 

where G is the Fourier transform of #(s) = I sech [2nsh]P(Z). G(x)  reduces to F(x/Z) 
in the limit h/Z -P 0. So as to check the validity of (3.14) a t  intermediate times, we 
can use in (3.13) the formula (3.7) and the special form, which is often an acceptable 
approximation, Q(s) - G exp [ - 2ns2H2]. We obtain 

v D ( ~ , t )  = LGlf (c t+X, t )+f (c t -X , t ) ] ,  (3.15) 

where X = 1x-x,l, and 

f ( A ,  t )  = 1 Srn exp [$ in3s3h2cO t - 2n2s2H2 - BinsA] ds 
2 --m -" 

= (4h2c0t)3exp [' -~ H3 ( __- H3 3 g ) ] A i [  (4 h2Co  t)i (c-2$)]. h2Co t (3.16) 3 h2Co t h2Co t 

If simultaneously H > 1.5 (h2c0 t ) i  and H > 2A, the asymptotic form of the Airy 
function that corresponds to the 'rainbow dark side' can be used, giving 

f ( A ,  t )  - 4(2n)-5H-' exp [ -- g2] ( 1  + + AH-4h2~0  t )  ; (3.17) 
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had the approximation (3 .14)  been used, the last factor would have been missing - an 
error of only a few per cent. For larger A, only the first oscillations on the 'rainbow 
bright side ' of the Airy function are different from their estimates obtained through 
the stationary-phase method. In  conclusion, the larger width of a (smooth) source 
may be sufficient to justify a shallow-water approximation, even a t  intermediate 
times, provided that the beginning of the wavetrain only is considered (i.e. up to a 
distance of the order of the source width). For h 4 1, the result (3 .14 ) ,  where 
G(z) N F(x / l ) ,  is readily obtained from (3 .12b) ,  since g,(u) is then a peaked function 
of width - h, and can therefore be replaced by S(u-ct) .  This remark will be used 
in the three-dimensional case. 

3.3.  Two-dimensional case without sudden approximation 

From ( 3 . 2 ) ,  we easily obtain 

w o o  
~ ( z ,  z ,  t )  = 4 jo Jo d r d s 6 ( r )  cos [277rz] cos [2nsx] sech [kh] 

a 
a7 I d 7  cos [ ( t - 7 ) w o ( k ) ] - - ( s , 7 ) ,  (3 .18 )  

a 
a7 ds  cos [2nsx] sech [2nsh] cos (t--7) w(s) ]  - A($, 7) d7, (3 .19)  

where 4 s )  = ~ ~ ( 2 7 7 s ) .  Suppose now that the ground motion lasts between t = 0 and 
t = to ,  and that we are interested by the phenomenon after t = to. Integrating by parts, 
we get q = rP+qT, with 

l;lp(x, t )  = 2 Jow ds cos [2nsx] cos [w(s)  ( t  - t o ) ]  o ( s ,  to) ds,  (3 .20)  

ds  cos [2nsx] w(s)  sin [w(s )  (t  - T ) ]  G(s, 7 )  d7, (3 .21)  

where c"(s,7) = sech [ 2 n s h ] A ( s , 7 ) .  qp is due to the permanent ground displacement 
and is of the form studied in $3.2,  with t - to  instead of t .  qT is due to transients. For 
a smooth function A(x, t ) ,  A(s, t )  sech [2nsh] is negligible beyond s - (277 h)- l .  Hence, 
if the ground-motion duration to is so small that  g t i  < h, the values of w ( s ) 7  that  
contribute to the integral are small, and we can replace sin [w(s )  ( t - ~ ) ]  by 
sin [ w ( s )  ( t  - t o ) ] ,  obtaining the rough approximation 

The condition g t i  < h means physically that during the ground motion, gravity 
waves do not have time to propagate to O(h) .  The right-hand side of (3 .22 )  can be 
evaluated like the permanent displacement. I n  particular, if o ( s ,  t )  = w(s) T(t) ,  and 
if the permanent displacement does not vanish, qT - - t ,  d v p / a t ,  where 

t ,  = [T(t0)]-l Jr T ( 7 ) d 7 .  It is not surprising that qT is related to acceleration. If t ,  

is not too large, the effect of the transients is simply to shift the apparent beginning 
of the phenomenon, since ~ ( z ,  t )  N q p ( x ,  t - t l ) .  Compared with a 'sudden ground 
motion ', the total time shift is to + t , .  
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3.4. T ~ ~ e e - d ~ m e n s i o n ~ l  caae 
According to (3.11), the ‘direct term’ of the response to A(%,) [S(x-xo)+S(x+xo)] is 

q&, z ,  t )  = 4A(x0) d r d s b ( r )  cos [2nrz] JOWJOrn 
cos [2nsX] sech [kh] cos [ t ~ ~ ( k ) ] ,  (3.23) 

where X = lx-xo(. Using (3.6), we easily derive 

q&,z,t) = -A@,)  d r 6 ( r ) c o s  [2nrz] J ;du[&gt(u)]  Jo[2nr(u2-XX2) i] .  (3.24) JoW 
Since g(u) vanishes for u > co t ,  so does qi, for X > co t. By integrating by part, we 

can write r,&(x, z ,  t )  as a superposition of two-dimensional amplitudes, which is 
convenient for analysis. The same remark applies to the response to an extended 
source : 

d r b ( r )  cos [2nrz] [: d C A ( [ )  

d 
dv 

dwJo[2nrw] - gt([wU2+ (x-€J2]i). (3.25) 

We shall illustrate this formula only by an example using the special forms (already 
introduced) 6 ( r )  = n/3 exp [ -2nprI and A ( x )  = L[F(X+/ l )  + F[X- / l ) ] ,  with 
X ,  = Ixkx,l. Thus 

qD(x, z ,  t )  = -8PL dw Re [v2+ ( P + ~ Z ) ~ ] I - ~  
d 
-g t ( [v2+(X--W)2]~)  ( 3 . 2 6 ~ )  
dw 

= ~ , 8 L ~ m F ( ~ )  dw{gt (X-w)  Re [P+iz]-l 
-m 

+ ~ o m d w g t ( [ v a + ( X ~ - w ) z ] ~ )  - d Re [ W ~ + ( ( P + ~ Z ) ~ ] - ~  
dv 

The reflected term is similar, with X ,  instead of X- .  Simple results can be obtained 
if 1x1 % 1, and h < 1 - 4  p. I n  this non-dispersive range, g,(u) is a peaked function 
centred a t  u = ct, width N h, and F(w/ l )  is a peaked function centred at w = 0, width - 1. Two parts of the pattern are easy to see (we assume X -  < ct). 

The second term in (3.263), compared with the first one, is of order 
lpct (c2t2 +p2 - Xl)-n, and is therefore negligible. The first term is dominant, and hence 
the motion is almost two-dimensional in this domain, which defines the axial part 
of the ‘emission lobe’. 

(ii) JzJ 2 2 p .  The right-hand side of (3.263) has noticeable values a t  two places. The 
first one is ct = X, where the first term has its maximum value gLlpZ(p2+z2)-1. The 
second one is ct = [XZ -p2  + z2] i ,  where the peaks of F ,  g t ,  and d Re [ ] /dw,  coincide 
in the second term of (3.26b), which is then equal to QLlctp- id .  Clearly, the relative 
importance of these two wave amplitudes changes as t increases. It is even possible 
to find domains in the non-dispersive range in which the second term is dominant 
and has a value of the opposite sign. Thus the results are complicated. However, the 
general decrease of the crest envelope for fixed X- is relatively slow, very roughly 
like 2-4 as long as X- lies between 1 and p Z / l .  Along the coast, the presence of the 
reflected term doubles the effects, so that, for x1 between 1 and p z / l ,  one may have 
a significant amplitude up to z equal to  a few p. Notice that the width of the wave 

(i) 121 5 
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travelling in the direction Ox (first term of 3.263) is of order 1. That of the radial wave 
arriving a t  ct = [x2 - p” + z2]4 is of order p in typical cases. If the depth varies rapidly 
after x - x 2 ,  say, this long wave can be strongly reflected by the slope, so that the 
energy that is not emitted along the direction Ox remains confined between the reflect- 
ing coast and the reflecting slope (typical values h = 100 m, 1 = 400 m, p = 2000 m, 
x1 = 800 m, x2 = 1500 m). Besides, even in the constant-depth case, nonlinear effects 
in wave propagation can alter the dispersion effects for these long waves, so that the 
slow decrease may be continued for larger c t .  Needless to  say, a t  large distances, 
asymmetry effects are reduced (and rapidly overwhelmed by refraction effects on 
variable depth). 

4. The sloping bottom case 
We give in tjtjA.2-A.4 of the appendix the sequences of successive approximations 

for solving (2.12) and (2.13), with iterations both ons(x, xo)  and on t .  If all assumptions 
are valid, these sequences, as well as the regularizing trick, can give arbitrarily good 
approximations of Y. However, we only use the first or the second iterated term, as 
given in (A 36).  According to our analysis, they correspond to sources (2.19) of 
non-vanishing S-ness, so that the approximate sources they can build are usually 
smoother than the exact ones. Thus, for certain sources one cannot expect more than 
a rough approximation of the results. 

In  thezeroth-order approximation, we keep only the two first terms in the right-hand 
side of (A 36).  It physically means that each localized perturbation of the bottom 
does not ‘know ’ that the bottom is not horizontal. The next terms take care of the 
reflection on the slope (relative O ( p ( h ) ) ) .  A point must be made. Up to the relative 
O(t2p(h)) ,  taking into account this reflection is equivalent to making a time- 
independent source correction. For an estimate a t  small times, especially for 
phenomenological sources depending on few parameters, i t  is better to  keep only the 
zeroth-order term and to remodel the source to account for the slope correction. 
This correction has been done implicitly below. 

4.1. Sudden approximation: general formulas 

At time t = 0+, for A(xo ,  Of) $; 0, we obtain from (A 36) first terms (or from (3.5)) for 
an extended source 

r m  r m  
r D ( x ,  t )  - 2 J dc7 (x,,) J ds cos [2nrs(x-xo)] sech [2nsh(x0)] cos [o(xo, 2ns) t ] ,  (4.1) 

0 0 

where o(zo, k) = {gk tanh [kh (x , ) ] }~ ,  and da(xo)  = A ( z o )  dx, is the differential cross- 
section of the ground perturbation. rR(x,t) is given by the same formula, with 
cos [2ns(z+x0)] instead of cos [2ns(x-x,)]. 

Our derivations and estimates hold only for small t (more precisely &t2 5 ho), both 
because higher orders are neglected and because the flanks of the &like sources are 
negligible if the propagation time of information coming from them is much larger 
than t .  On the other hand, the results should be precise within these conditions. They 
can then be used as an initial surface displacement for propagation studies. 

The above derivations and approximations are extended in §A 6 of the appendix 
to the three-dimensional (separable) case, yielding from (A45) (or (3.4)) the ap- 
proximate value 

m m  

r,,(X,z,t) - 4 j 0 m A ( ~ 0 ) d ~ 0 j  d rds6 ( r )  cos [2nrz] cos [ ~ ~ S ( X - X , ) ]  
0 0  

x sech [kh(zO)]  cos [w(zo, k) t ] ,  (4.3) 
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which is valid in the sudden approximation. With 6 ( r )  = np exp [ -2npr1, and 
dV(xo)  = npA(xo) dx,, (4.3) reads 

q,,(x, z ,  t )  = 4 Jam d ~ ( x , )  JomJomdr cis exp [ - 2npxl cos [2nrzl cos [2ns(x - xo)l 

x sech [kh(x,)] cos [w(x,, k ) ] .  (4.4) 

4.2. Two-dimensional analysis : sudden approximation 

So as to determine the important parameters, we have t o  study q(x ,  t )  (or q(x, z ,  t ) )  
in the first moments, the problem a t  later times being more a problem of propagation 
on water of variable depth. Let us study them first in the sudden approximation. 
From (A 19a) and (A 36), w e  see that the first deformation of the water surface is 

One can check on this formula that the total cross-section u of the surface wave 

(Jam q(x, 0) dx) isequal to the total cross-section da(x,) oftheground displacement (Jam 1 
(incompressibility). We make several remarks. 

(i) A displacement da(x,) contributes the wave amplitude a t  a fixed point x with 
a weight that  cannot be larger than [h(xo)]-’, and decreases exponentially for large 
(x -xo) .  Hence i t  is not correct to predict the effects of a ground motion by giving 

only the displaced volume da(xo)  . If the ground motion is due to blocks falling 

down or a loop sliding along the slope, we model i t  by a crater near the coast (small 
h(xo) )  and a bump far away from the coast (large h(x,)). Then we see that the first 
hydraulic effects on the coast are due to the cratering. If du(xO) is a very smooth 
function of xo, extended over the whole slope, the initial surface displacement near 
the coast will typically be a negative half-oscillation of width - h,, (maximum height - 2a/hM,  strongly assymetric towards the coast), approximately centred at the 
‘crater centre’, i.e. halfway on the slope (depth hM). The initial surface displacement 
away from the coast will be a positive half-oscillation of width 2 2h,, initial height 
N a/2h,. This positive half-oscillation will arrive a t  the coast later, and, because of 
its ‘wavelength’, it should be strongly reflected in any model. This is why we assumed 
total reflection in our linear model. However, in true phenomena, the propagation 
would also show several nonlinear features. 

So as to  get a more precise feeling of the t = 0 situation in a particular case, one 
can consider a ground displacement in which A a  is extracted from the ground around 
xi, with a lateral extent that is small compared to h,, and put a t  xi. The corresponding 

) 

amplitude is 

where 

A general displacement of matter is then conveniently done by superposing various 
displacements Ar of this kind. q is then given by the sum 

q(z, 0) x !j Z Aai  [ -r(x,  zi) + r(x ,  x i ) ] .  (4.8) 
i 

Going to the limit of a smooth superposition of these displacements, one can justify 
the qualitative description that has been given above. 
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(ii) In  the sudden approximation, y is stationary a t  t = 0. The surface deformation 

energy is the (two-dimensional) potential energy W = -$pa g y 2 ( x ,  0) dx.  The maxi- 

mum energy E available because of the ground displacement is readily related to  
the area A u  that has been displaced and to its depth shift. We evaluate the rate of 
efficiency W / E  in several cases.? 

Case 1 : Narrow displacement. We assume that a prism of area A u  = Ad (width 
d 4 hi = h(x i ) )  is taken away at xi and goes instantaneously to x f  (Ax = xf  - x i ) .  First 
notice that our model holds only if the energy release E = pg A u  (h, - hi) is larger than 
the energy Emin = pgd-1(Au)2 that  is necessary to create a hole in the ground a t  xi 
and the corresponding bump a t  x f .  Now W can be calculated by using (4.6), with the 
result 

OD 

0 

If xi is far enough from the coast, we can neglect the last three terms, which 
correspond to reflected waves, and are both small and not very relevant (in the sense 
that our approximations may have introduced larger errors). Thus, with Ah = h, - hi, 

(hi +h,) [(Ah)'+ 1 * 2 4 ( A ~ ) ~ ]  
h i h f [ ( h i + h f ) ' +  1 * 2 4 ( A ~ ) ~ ] '  

W x 0 . 1 7 p , g ( A ~ ) ~  (4.10)  

The rate r = W / E  is always small. If Ah 4 Ax 5 h, = -$(hi +h,), r is smaller than 
O*09po/p for E = Emin, viz 5 % for po N 1 ,  p N 1.8. However, this would correspond 
to small slopes, and small energy releases. I n  most physical cases (kM E ( 0 * 1 , 0 8 ) ) ,  and 
even for Ax 5 h,, E is much larger than Emin. Then the rate is asymptotic to 
0.18 AU hk3 Ax h '~ '  (1 +0*8h'&) po/p.  For AX = h, = 400 m, AG = 10000 m2, 
h& = 05, one gets r = 1.5 % ! Besides, in many cases, Ax is very large, much larger 
than h, sometimes. Then i t  follows from (4.10) that the rate of efficiency is asymptotic 
to 

(4 .1  1 )  

whereas W - 0.17 p o g ( A ~ ) 2 [ h ; 1 + h ; 1 ] .  Hence, for a narrow loop slide from hi to h,, 
with h, B hi, it  is certainly more physical to appraise it by the number 0.17 (Au)'/hi h, 
than to do it by Au,  as i t  is usually done. 

Case 2: Wide displacement. We assume that the amplitude of the displacement is 
very gently varying with depth, so that i t  is reasonably represented by a function 
A ( x )  = dtr/dx so smooth that i t  does not vary much on Ax - h(x) .  Thus the coefficient 
of A ( x o )  in ( 3 . 5 )  behaves like a &function and y(x,O) - A ( x ) .  Then, if 
A ( x )  N A sin (2mxIL) for x Q L,  0 elsewhere, W - b o g A Z L .  The energy release of 
gravity forces in the ground displacement is E - $gALAH, where AH is the depth 
shift, and has to be larger than A .  Hence i t  seems that the rate of efficiency could 
be important and go up  to 25 yo. However, this is misleading, because the only case 
in which this approximation may be valid, together with the sudden approximation, 
is that  of a tsunami created by a very-large scale earthquake. But the gravity forces 
work in the permanent displacement is then but a very small part (a few thousandths) 

t Several authors have given the efficiencies corresponding to experimental studies. Efficiency 
definitions involve a lot of arbitrariness. 
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of the energy release in the earthquake! In the case of a landslide, the ground 
displacement velocity is always much smaller than (gh)4 and the sudden approximation 
fails utterly. 

4.3. Two-dimensional analysis and giving u p  the sudden approximation 

Again we use the lowest-order approximation and we neglect the reflected waves. The 
formula that corresponds to (4.2) is 

f m  r m  
yD(x, t )  x 2 Jo dx, J ds cos [2ns(z-xo)] sech [2nsh(zo)] 

0 

a 
a7 Leos [wO(t -7)]  - A ( x 0 , 7 ) d 7 .  (4.12) 

There are two main ways of giving up the sudden approximation. 
First way. We introduce the displacement as a whole ('separable' function A(xo,  t ) ) ,  

and we obtain the permanent displacement either progressively or after oscillations. 
This is what we did in 53.3, and the analysis we could give here is not really different. 
In  particular, the amplitude of the transients is an increasing function of the 
displacement derivatives. For a very smooth displacement, the transients hardly 
contribute to the hydraulic phenomenon. The best known physical cases are the 
ground displacements due to explosions or to seisms. On real physical examples we 
have been able to see that even a transitory displacement four times larger than the 
permanent one yields a smaller contribution to the water waves. 

Second way. So as to give a better fit for underwater landslides, we use the 
progressive function 

A(x0,  t )  = AS[G(Z,-X, - ~ t )  - G(zO-xl)] @(t) ,  (4.13) 

where 0 is the Heaviside function, G(x) is a bump-like function that has a width a 
and a total area equal to 1,  e.g. G(x) = a-2xexp[-z/a]@(x). 

Clearly, A ( z o , t )  is a fairly good representation of a piece of ground taken away 
between x1 and xl+2a and travelling along the slope, away from the coast, with 
velocity u. Putting an additional factor @(to-t)  stops the motion at to. 

Case Z (a )  a < h(zl). It is reasonable to approximate G by a &function: say 
G(xo-xl) x 6(xo+xl). Let us then insert (4.13) into (A 36), and assume that we study 
the phenomenon for gt2  5 h(x,). We obtain for r& the following estimate: 

ft 

+m T X  
yl(x, xl) = j-, exp [ - 2insxI wf (s ,  x) T0(s, xl) ds = $g[h(zl)]-z 1 + X - sech ~ ( :X) 2 h h )  

x = 5 - - X I .  

We have only kept the two first terms in the right-hand side of (4.14) for a rough 
evaluation (the remainders being useful to check its validity). The extreme opposite 
case to the sudden approximation is v 4 c1 (with c1 = [gh(z,)]t). It yields 

(4.15) 
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which a t  x = x1 is maximum for g t 2  = h(x l )  and then approximately equal to 
-0.33 h; v /h ,  cl. Values of the maximum in neighbouring points are also proportional 
to hi v/hl  c l ,  with somewhat-different coefficients. 

Case 2 ( b )  Very smooth G with a $- h(x l )  and very small h;. We shall make drastic 
approximations. First we assume that the very-long-period (small-s) components are 
dominant (this was done in ss3.1.3 and 3.2.1). Thus (4.12) can be written in the form 
VDix, t ,  = TD(x> t ,  c, +yD(x> t ,  - c ) >  

1 a 
= a jOm dzo [ a7 A(xo , t )  h-l sech ( x -x ,+c t - c~)  d7. (4.16) 

Inserting (4.13) into (4.16), and replacing the sech by a &function since its width h 
is much smaller than a ,  we obtain after adding vD(x, t ,  - c ) ,  and to the second order 
in v/c, a very simple result 

[ G ( x - x 1 - c t ) - G ( ~ - ~ , + c t ) ]  (4.17) 

in which a trough going towards the coast and a hump going away are superposed, 
with the local velocity c .  They are built by interference of the locally created waves 
and the propagated ones. Quantitatively, this formula is not justified, unless h’ is very 
small. So as to justify the method devised in the appendix, one must not observe the 
phenomenon outside of a range - h(zo)/h’(xo)  around a source a t  xo. So a and ct must 
be smaller than h,/hi, with a % h, and c t  > a when the two waves are separated. 
Thus (4.17) may hold at most in a narrow range around xl. If it does, the rate WIE,,, 
is simply i ( p o / p )  AX/ahl, which is qualitatively consistent with experimental results. 

Taking into account higher orders in the developments gives more reliable results 
but at the price of much more complicated formulas. 

1 A S v  
4 c  VD(x> t ,  - - __ 

4.4. Three-dimensional analysis 

From (2.12) and (A 46) we obtain the formula 

~ D ( z ,  Z, t )  = J” J” J” dr ds dx, exp [ - 2in(rz + s X ) ~  b ( r )  sech [kh(x,,)] 
+ m  +a, fa, 

-m -m -a, 

gt2 h gt2 
0 (e ’) + 0 (( x) ) + 0 ( T)  . (4.1 8) 

We shall study three cases. 
4.4.1. Sudden approximation: source elongated in the z-direction. Keeping only the 

first term in (4.18) is equivalent to integrating (3.23) over xo (direct term). We make 
here only two remarks. 

( i )  the weight of a source localized a t  xo being [h(xo)]-’, there is an apparent 
diminution of the source in the direction normal to the coast. Hence the asymmetry 
assumed in $3.4 is more easily achieved. 

( i i )  the initial surface depression being elongated along the coast, we learn from 
the constant-depth case that one can see a t  small distances on one hand a small 
decreasing along the coast; on the other hand one sees a concentration of energy in 
the direction normal to  the coast, viz a diffraction lobe. I n  the case of a slope, energy 
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trapping along the coast will be helped both because waves are reflected from the 
slope and because the initial larger apparent length of the wave along the coast makes 
a faster propagation into this direction and helps the formation of a trapped wave. 

4.4.2. Suddenapproximation: localized source. For a source ofvolume A V ,  half-width 
a along x ,  p along z ,  it  is convenient to set 

A ( z , , t ) b ( r )  = @ ( t ) A V a - l  exp [ -7r ( x ~ ~ x ' ) 2 ]  __ exp [-7rrzp2], (4.19) 

where a and p are assumed to be small compared with ha. Besides, we are interested 
only in the surface shape near the maximum deformation, which is usually close to 
x = x1 and z = 0 a t  t = 0, so that one can assume R2 = X 2  + z2 < h;. Now let us first 
suppose that a and /3 vanish, so that the first two terms in (4.18) reduce to  

qD(x, z ,  t )  z 4AVJomdrjomds cos [27rsX] cos [2nrz] sech [kh,] 1 -&gt2k tanh [kh,]) 

= ( 2 n ) - 1 h ; 2 A V ~ 0 m d u J 0 [ 3  u sech [u] 1-&u tanh [u] - "7 . (4.20) 
hl 

Clearly, for R 4 h,, J,(uR/h,) can be replaced by 1 -$2R2/h?, giving the bottom of 
the deformation by the two first terms of its R2 expansion. 

We learn in (4.20) that, for a very rough approximation, sech u could be replaced 
by any function f (u)  going very rapidly to zero beyond u = 1 and such that 

u3 f (u)  du .  jam u sech u d u  = y = Jam duf(u) du Jam u2 sech u tanh u d u  = Jam 
Such a function is y exp [ -4  u2]. Thus, for non-vanishing a and p, let us replace sech 
[kh(x,)] in (4.18) by y exp [ -+k2hf] [l -k2(x,-x1) h, h',]. It turns out that the term 
containing E ,  (evaluated by means of (A 44)) vanishes. The two first terms yield, for 
small a /h ,  and small P/h,, 

where X = x-x,, d = (1  +a2/2nh;)-4, /? = (1  +P2/2nh3-;, and R2 = d 2 X 2 + $ z 2 .  
The main term appears as an  overall coefficient because the corrections were obtained 
by differentiating it. Throughout these derivations, we neglect the variations o f 6  and 
B, and consider a2/h; and P2/hf as infinitesimal parameters. One could write 
consistently oc" - 1 - (477-l u2/h; for instance. We see that the value a t  z = 0, x = x1 
is multiplied by d/?, which is smaller than 1 and decreases with the source spreading. 
The slope correction is always small, whereas the time evolution becomes essential 
for t - (h, /g) i .  Compared with the two-dimensional result (4.6), we see that (4.20) or 
(4.21) show not only the expected additional h;l but also an extra factor y/r, which 
is smaller than 1. 

4.4.3. Slow displacement: localized source. We keep only the first two terms in (4.18), 
and we insert (4:13), with 

6 ( r )  G(x,) = A V a - l  exp [-(-)'I exp [ -nr2p2]. (4.22) 

Let F(h,) be the main term in (4.21) (we shall neglect the variations of d and B with 
h,). The response to (4.13) is approximately 
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To the first order in hi, this yields 

I n  particular, a t  x = x,, z = 0, T~ is an extremum for gt2 - h,, and the extremum 
is equal to 

(4.24) 

Notice that for fixed slope and limit speed v this decreases like h;%. 

5. Final remarks 
5.1. Conclusions 

We gave the initial surface displacement of a body of water following underwater 
ground motions. Depth is variable, with slope everywhere smaller than 45'. It is 
assumed that the slope is constant on lines parallel to  the coast. 

(i) The relative effectiveness of a source localized a t  x = xo (two-dimensional case), 
x = xo, z = 0 (three-dimensional case) in its contribution to the amplitude is 
proportional to [h(x,)]-l dS (two-dimensional case), to [ h ( ~ , ) ] - ~  d V (three-dimensional 
case), with a smaller coefficient in the three-dimensional case. 

(ii) The initial displacement lateral size is of the order of h(z l )  if the source width 
a is much smaller than h(x,) (xl = source-centre abscissa), but is of the order of a if 
a 9 h(x)  throughout the source. 

(iii) If a localized ground displacement starts sliding from x = x1 with a constant 
velocity v -+ c = [gh(x,)]i, the generated wave amplitude is roughly proportional to 
dS hi h;l v/cl (two-dimensional case), d Vhi hT2 w/cl (three-dimensional case). 

(iv) If a source is extended offshore, with its length (parallel to the coast) larger 
than its width, this asymmetry is increased by depth effects. It results at small 
distances in a diffraction lobe, which may generate trapped waves or energy 
concentrations in the propagation that follows. 

(v) If the permanent displacement is reached more slowly, and with a separable 
time dependence (e.g. explosions, earthquakes), the hydraulic effects of transients are 
usually much smaller than those of permanent displacements. 

(vi) The effects of ground motions that are equivalent to instantaneous transfer 
of AS from x1 to x2 depend essentially on h(x,), h(x,), AS, and the average slope. The 
rate of efficiency is almost always smaller than 5 yo. 

(vii) Slow and very wide progressive ground motions (e.g. landslides; for a recent 
review see Slingerland & Voight 1979) are beyond the scope of the present paper 
because the wave-propagation problems and wave-formation problems become 
combined. However, a very rough estimate shows that the rate of efficiency is still 
smaller than in other cases, unless the ground velocity is of the order of the wave 
velocity. 

5.2.  Comparison with experimental results 
As has been mentioned, there is qualitative agreement with published experimental 
results made in the laboratory. The agreement with stereo films of real water waves 
due to ground motions in comparable cases is acceptable. New experimental results 
will be published soon. In  most cases the main waves are somewhat smaller than those 
predicted here. 
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5.3. Criticism of theory and possible improvements 

(i)  The linear treatment of sources is usually good for explosions and earthquakes. 
In  the cases of rockfalls and landslides it is certainly poor, but may be no more so 
than any source representation by an analytically tractable model. 

(ii) Nonlinear effects are often important near the shore line and may modify a 
trapped wave. 

(iii) The problem of slow progressive motions on variable depth cannot be managed 
quantitatively by our theory but other approximations (see Slingerland & Voight 
1979) are appropriate. 

I am glad to  acknowledge valuable discussions on water waves with Drs J. BrugiBs, 
M. Dutzer, G. Gouttikre and C. Guerini, useful discussions on ill-posedness with my 
colleagues Professors Seidman and J. J. Moreau, and the useful comments of the 
referees. 

The work reported upon in this paper has been carried out as part of R.C.P. 
no. 264 : Etude Interdisciplinaire des Problkmes Inverses. 

Appendix 
A 1 .  Preparation 

In  both the two-dimensional and the three-dimensional cases (for r = 0), the study 
of (2.12), (2.13) reduces to that of 

lim { rrn e-ns2b2 ds [ K ( x ,  s )  f ( s ,  t )  + d7( t -7 )  L ( x ,  s )  f ( s ,  T ) ] }  = A(%, t ) ,  (A 1) 
b-0 -m 

where we have taken into account the regularization schemes, and 
a 

2nsK(x,  s )  = i - ax {exp [ -2insxI cosh [Snsh(x)]}, (A 2a)  

(A 2b) 

(A 2c) 

a 
ax 277s L(x,  s )  = i - {w2(s,  x) exp [ - 2insxl cosh [2nsh(x)]}, 

w2(s,  x) = Snsg tanh [2nsh(x)]. 

The equation obtained by keeping only the first term in the left-hand side of (A 1 )  
will be called the truncated equation. I t s  solution a t  t = Of is the ‘sudden 
approximation’. Now, for a constant depth hfx,), (A 1) has an exact solution. This 
suggests introducing, for a given xo 

y”(s,x,,t) = f ( s , t )+o2(s ,x0)  d7 ( t - - ) f ( s ,7 ) .  (A 4) c 
Inserting (A 3 )  into (A 1) yields 

lim {{:I d s  e-ns2b2 [ K k ,  8) y”(s, xo,  t )  

where wo stands for w(s ,  x,), and 

d 
2nsk(x, x,, s )  = i- {w2(s,  x) -w2(s ,  x,)] exp [ - Sinsx] cosh [ 2 n ~ h ( x ) ] } .  (A 5 )  a x  
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The truncated equation is the same one in (A 4 )  and (A 1 ) .  We shall first study this 
equation. In  $ A2, we evaluate 

+m 

b-0 j - m  
IF(x, x,) = lim dse-”S’b’ K(x ,  s) sech [2nsh(x,)] exp [2insx,], (A 6) 

the reflected term @(x, 2,) being obtained by making xo --t -5,. The integral (A 6) 
for b > 0 ,  say, IF(., x,), is a tempered function of x. We shall show that for b + 0,  
IF and IF contain a &function and a remainder.We prove in §A 3 that this remainder 
is bounded in such a way that the iteration scheme described by (2.22)-(2.24) works 
even in the limits b + 0 and N 4 03 . Thus we are able to  construct a ‘resolvent kernel ’ 
for the truncated equation. At this point, we can try to ‘improve’ the pair-source 
response for the whole equation (A 1 )  or (A 4 )  by successive approximations mainly 
taking into account the operators on x. This was done in an earlier version of this 
work. However, i t  is easier to  iterate on time. We show in $A 4 how this iteration 
series converges, and in $A 5 we give its first terms, which are the only ones to  be 
used in the present paper. I n  §A 6, we sketch in few lines the method used in the 
three-dimensional problem, and in §A 7 we sketch some well-posedness proofs for the 
linear problem. 

A 2.  6-ness of Io(x, x,) 
Let us introduce the sequence h, = (2n+  l ) h ( x o ) ,  and, for any h ( x ) ~ [ h , , h , + ~ [ ,  we 
replace cosh [2nsh(x)] and sinh [2nsh(z)]  in (A 6) by using the following formulas, 
which are readily proved by induction: 

cosh H ,  sech H ,  = 2 (cosh ( H ,  - H,) - cosh ( H ,  - 3H0)  + . . . ( - l)n 

~ c o s h ( H , - ( 2 n + 1 ) H , ) ) + ( - l ) ~ + ~  cosh [H1-(2n+2)H0]sechH0: ( A 7 )  

sinh H ,  sech H,  = 2 {sinh ( H ,  - H,)  - sinh ( H ,  - 3H0) + . . . ( - I),  

xsinh (H,-(2n+1)H0)}+(-l)n+’sinh [ H , - ( 2 n + 2 ) H o ]  sechH,, (A 8 )  

where H,, H ,  stand for 2nsh(x),  Bnsh,. Now, the last-term contribution to the integral 
(A 6) is uniformly convergent for any h(x) of the open interval ] h,, h,+,[, and any 
b > 0. Let us assume in the following that Ih’(x)l < C < 1 for any x. The other terms 
involved in (A 6) can be exactly calculated, for any b > 0,  as a finite sum of terms 
of the form 

r+m 
I * ( X , A q ( x ) )  = 2 [ 1  +ih’(z)] J exp [-ns2b2+2nsAp(x)-2insX]ds 

-02 

= 2 [l *ih’(x)] b-’exp [ - n b - 2 ( X + i A q ( x ) ) 2 ] ,  (A 9) 

where AJx) = h ( x ) - ( 2 q + 1 ) h ( x 0 ) ,  and X is x-x,, or x+x,. The behaviour of (A 9) 
depends on q. Both X and Ao(x) have f xo as a common root. It is clear that  I* ( X ,  A,) 
does not converge in any space of functions of a real variable. Besides, for any function 
of x that belongs to C,(R) and has finite support in [x,, 03) one can write 

00 

I* (x - x,, A o ( x ) ) f ( x )  dx = 2 lim b-l exp [ - nb-2(x - x, f ~ A , ( x ) ~ ]  :: s,, b-0 jx: 
X ~ f ( ~ o ) + ( ~ - ~ o ) P 1 ~ 0 + ~ ( ~ ~ ~ 0 ) ] }  (1 f i h ’ ( x ) ) d ~ ,  (A 10) 

where 6’ is an unknown number between 0 and 1 ,  depending on x. Because of our 
assumption on h’, and if F’ is an upper bound of I f / ,  the part containingf in (A 10) 
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is absolutely bounded by 

49 

oo 
2F’ lim exp [-nbP2(1 -C)2(x-x0)2] (X-x,) dx, 

b-0 jzo 
which goes to zero with b. The other part involves the integral of exp [ -nbk2z2] in 
the complex plane on the countour z = (x-xo)+iAo(z) ,  starting a t  x = x,, and is 
therefore equal to  roo 

i.e. f ( x o ) .  Hence, for functions of C,(R) with finite support in [x,, a), the function of 
x I*(x-xo,Ao)  goes over to 6,0(x) as b + O .  Now let us assume that h’(x) is itself 
differentiable. Permuting x and x,, and replacing h’(x) inside the integral by 
h’(xo) + (x-x,) h”[x,+8(x-xo)], we prove in the same way that for functions of C,(R) 
with support in [O,z], the function I+(x -xo ,  A,) of zo goes over to 6,(x,) as b -+ 0 .  
Transformation of these remarks are trivial if we use the symmetry convention 
described in $1  and allow negative x. We conclude that, provided convenient 
conditions are respected in the limit processing, limb+, I * ( X ,  A,) = S ( X ) .  

Assume now that q 4 0. It follows from the monotone-slope assumption that 
(xq( > 2,. Let us study the case xq > x,. It follows from the Ih’(x)l < C < 1 assumption 
that IA,(x)l < C(z-z,(. We are interested only in the values of x:x 2 5,. Now, it 
follows from (A 9) that  

11: ( X ,  A,(x))I < 22/2 b-l exp [ - b-2(X2 - C 2 ( s -  z,)~)], 

and the argument in the exponential is lower than its value for x = ;(zl+x,), viz (in 
the case X = x-x,, which yields there the lower value) : ( X , - X , ) ~  (1 -Cz) ) .  Hence, for 
any x 3 +(xo+xq),  in particular J: 2 xg, I$(X, A,(x)) goes uniformly to zero as b goes 
to zero. The results are readily extended to the case x < -g(x, + x,). The same uniform 
convergence to zero holds also for I$  ( X ,  A,(%)) if 1x1 > t ( xo  + xl) and to 

11: ( X ,  A0(x)I2 dx. d ZI >+(xO+x , )  

s, 

Let us now use these results for calculating (A 6). For 0 < h(x) < h,, only the last 
terms of (A 7 )  and (A 8) remains. Thanks to our simplifying assumption of a 
monotone h(x),  we can write 

+a, 

I,(x < xo,zo)  = A(x , , t )  {exp[-Zins(x-x,)] 

+ exp [ - 2 im(x  + x,)]} sech [2nsh(x,)] 

x {cosh [2nsh(x)] + ih’(x) sinh [Znrsh(x)])ds 

= A(%,, t )  {Re [( 1 + ih’(x)g[x - zo + ih(x)]] 
+Re [ ( l  +ih’(x))g[x+x,+ih(x)JJ} (x < x,), (A 11) 

where g(z )  is defined by 
+a, 

g(z )  = j-oo sech [2nsh,] exp 12insz]ds 

= (2h,)-l sech [n(2h0)-’z] (A 12a) 

for z = x+_x,+ih(x)  and A,(x) = h(z)-h(x,). 
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For ha Q h(x) < 3h,, we use (A 7 )  and (A 8 )  with n = 0. The term containing 
cosh ( H ,  -Ha) readily yields A(xo, t ) [ S ( x + x , )  + 6(x-xo)] ,  whereas the last term is 
calculated exactly as in (A l l ) ,  with the result 

-A@,,  t )  (Re [(l  -ih’(x))g[x--o+i(2h(zo)-hh(z))]] 

+Re[(1-ih’(x))g[x+xo+i(2h(xo)-h(x))]]} (2, d x < xl). (A 13) 

If we notice that 2h(x , ) -h (x )  = h(xo)-Ao(x),  we can write down (A 13) 
as a function of Ao(x). Using (A 12b), and noticing that generally 
Re [( 1 + iC)( -a  + ib)-’]  = Re [ - ( 1  - iC)(a + ib- l )] ,  we find that (A 13) is the analytic 
continuation of (A 11) through xo. 

More generally, for h, < h(x) < h,+,, or x, < x < x,+~, we obtain 

a 
b - 0  I, ax 

+m 

i Iim ( -  i),+l exp [ -ns2b2]  - {(2ns)-’  exp [ - 2 i n s ( x - x 0 ) l  

x cosh [27rs((2n+ 2 )  h(x,) - h(x))] sech 277s h(x,)}dx 

= ( -  l)n+l Re ( ( 1  - i  h’(x)) g[x-xo + i ( ( 2 n + 2 )  h(xo) -h(x))]}, (A 14) 
and, of course, a similar result with xo instead of -2,. Writing down (A 14) as a 
function of Ao(x) yields again the closed form that has been obtained for 
h(0) < h(x)  < 3h(x0).  If the maximum depth is H ,  and E(H/h(x,))  = 2 N +  1 ,  we can 
stop at n = N .  Referring to (A 6),  we conclude that the source that would yield the 

so@, xo) = 6(x ,  50) + eo(x, %a), (A 15a) 
left-hand side of (A 6) is 

Notice that the reflection makes h(x) = h( -x), h’(x) = -h’( -x), s( -5, xo) = 

s(x ,  -2,). 6(x-xo)  is the limit, as b goes to  zero, of 6b(z,xo) = 
Re J ; ( x - x O , A O ( x ) ) .  60(x,xo)  is the limit of 6 b ( x , x o ) ,  which is the sum of two terms: 
for ZE [x,, the first one is the term under ‘lim’ in the left-hand side of (A 14), 
say c6(x,x0). The second one, which appears for n > 0, is the sum of 
ReI;(x-xo,Ap(x)) for p = 1 ,  2 ,  .. .n .  As we have seen, this second term goes 
uniformly to  0 as b - 0, whereas Eb(x, xo) goes uniformly to co(x ,  x,). 

A 3.  Improvement of the 6-ness 

It is easy to see in (A 14) and (A 15) that  ~,(x, xo) and co(x, x,) are identically zero 
for 1x1 and JxoI larger than xm, since h(x) = h(x,) = h,. On the other hand, e0(x,xo)  
(and thus 6 b ( X , x o )  for small b )  can be bounded by means of (A 15). Let 

It is easy to derive the bounds, valid for e0 or cb with b small enough: 
h Iu cosh u + sinh ul 

h, sinh2 u 
h Iu cosh u - sinh uI h u 2  cosh u (A 16a) 

( ’ ha sinhZ u ’ +  ha sinh2 u J 
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+J3 +a2 

11e112 = j d x d z ’ e 2 ( z , d )  d Cp2(h) ,  
-00 -a2 

where C is some number. 
Now, let t$(z,zO) be the Nth iterated kernel defined from E; = eb by 
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(A 16b) 

Then Cauchy’s inequality yields Il.$II d IlebJIN+l. Suppose we want to obtain an 
approximate solution of 

+a2 j-, ds  K ( z ,  8) r“(4 = B ( 4 ,  (A 18) 

knowing that for 

q?(s, zo) = ecnsZb2 sech [2nsh(x0)] exp [2insz,], (A 19u) 

(A 19b) ds  K ( x ,  8) ~ ? ( s ,  2 0 )  = S,(X, xo) + c b ( z ,  2 0 ) .  1: 
We can proceed by constructing a sequence of functions 

N-1 r+ m 

which yields a sequence of sources 

J -a2 

and a corresponding sequence of responses 

For B(z)  = S(z-xo),  the response (A 22) can be written in the form 
S,(x, zo) +e$(x, xo), where E; is given by (2.24). It is easy to express e; in terms of the 
E;, and to prove (2.23). For any B(x) ,  if Cp2(h)  < 1 ,  one can go to  the limits b = 0 
and N = co, for which the right-hand side of (A 22) reduces to B(x) .  Hence (A 21), 
in the limits N + o o  and b = 0, gives the exact solution of (A 18), and 
limN+m b,(x) = b ( x )  is the solution of 

b(x) = B(x)  - d z ’ e ( z ,  z’) b ( ~ ’ ) ,  ( A  23u) 

i.e. b(x) = B(x)  - dz’ R ( x ,  z’) B(x’). ( A  23b) 

The (truncated) Neuman series of the resolvent R appears in the right-hand side 
of (A 20). Clearly we can also use this resolvent for transforming (A 1 )  into the integral 
equation 

+m l-, 
I-, +aJ 

d d  q j ( ~ ’ ,  2’) [B(z’, t )  - j:: R ( d ,  zl) B(x,, t )  dz,] , (A 24) 
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where 
+a, 

b-0 j-a, B(x,t) = A(x,t)-lim dse-nS2bb" d7(t-7) L ( x , s ) f ( ( ~ , t ) .  (A 25) 

Equation (A 4) can also be transformed into (A 24), with y"(s', x,, t )  instead of f ( s ' ,  t ) ,  
and B(x, t )  replaced by 

+a, sin [wO(t-7)1 
B(x,  xo, t) = A(x ,  t )  -1im k(x, x o , @  y"(8, ~ 0 ~ 7 )  (A 26) 

We can also insert (A 26) into (A 24), obtaining an integral equation for B(x ,  x,, t )  : 

ds e-ns2b2J':d7 
b-0  1-cc w0 

+a, 

b-0 {-a 
B(x,x,,t) = A(x,t)-lim dse-nS2b2 d 7 w c 1  sin [ w 0 ( t - ~ ) ] k ( z , x o , s )  

+m +a, 

x j dx' ~:(s', x') R(x' ,  xl) B(xl ,  xo, 7) d x , ] .  (A 27) 
-a, 

The 'reference value' xo can be chosen freely, each choice defining a particular 
equation (A 27); let us choose it in such a way that 

2h(x,) 3 ha,. (A 28) 

With this choice, we shall easily prove that the operator acting on B in (A 27) is 
bounded. Since this operator is obviously triangular in time, it follows that (A 27) 
can be solved by a convergent series of successive time approximations. 

A 4. Boundedness of the operator in (A 2 7 )  

Since R is a bounded operator on L,, i t  is sufficient to prove the same for the operator 
0 whose kernel is 

= 2ng lim +a, ds ,-nszb2-2insX, sinh [2nsA] + iA' cosh [27isA] sin [wo T] 
cosh [27ish,] cosh [2nsh,) w, > 

(A 29 b )  

where X = x--xl, A = h(x)-h(s,), A' = h'(x), h, = h(x,), T is real, wo = w(s,zo).  
Thanks to (A 28), and since h(x) < h,, the integral in (A 29) converges uniformly for 
any b, including b = 0. 

For fixed values of A,  A', h,, h,, the integral on the right-hand side of (A 29 b )  defines 
the Fourier transform of a function of s that  is analytic in a disk centred a t  the origin. 
It therefore yields a function of X that goes to zero morc rapidly than any power 
of X-l as X goes to CO. Since A ,  A', h,, h, take their values on finite intervals, on 
which the integral convergence is uniform, i t  follows that 0 can be bounded by 
C ( T )  f ( X ) ,  where C ( T )  is a suitable continuous function of time, and f(X) is a bounded 
function that goes to zero more rapidly than any power of X-l  as X goes to 00. On 
the other hand, i t  is easily seen that 0 vanishes when A and A' do, and thus in 
particular for 1x1 and lxll larger than x,. It, follows from these results that  11011L2 is 
finite and vanishes with p ( h ) .  This last result is sufficient to guarantec t#he convergence 

(A 30a) 
of the sequence 

B,@, xo, t) = A ( x ,  4 ,  
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Bn+l(x,xo,t) = A ( z , t ) -  d 7 O ( t - 7 , ~ ~ ; 2 , ~ ~ )  

+m 

f: 
X [Rn(zi, zo,7)-j  -m R(z1, ~ 2 )  B,(zz, xo, .)I. (A 30b) 

Thus we construct B(z,zo,t) ,  which is put for B in the right-hand side of (A 24), 
yielding y (s ,  xo, t )  in the left-hand side. From y ( s ,  zo, t )  one obtains f ( s ,  t )  by solving 
the Volterra equation (A 3), i.e. 

At this point, we have, in principle, completely solved the linear problem. We now 
calculate an approximate solution. 

A 5. The approximation used in the paper 

We keep a t  most the two first orders in t and llell. From (A 31), (A 24), (A 30) we get 

- - d ( s , z 0 ) ~ d u ( t - u ) A ( z i , u ) -  0 

+co f, 

d d f : ( d , x ’ ) j  -W [~(s ’ ,xz ) -R(z ’ ,x2)]A(z2 .u)} .  (A 32a) 

+a, 

Now any function G(s‘) can be put into the form 
g”(x) is easily derived by solving 

dx‘fg(s‘,x‘)g”(x’), since J-, 
+a, 

g”(z) + dx’ e(x, 2’) g”(x’) = ds’ K ( x ,  s’) G(s’). 
-02 SI,” 

Thus i t  is possible to calculate 

+m J-, dzf% s,S+mdxl -m [S(z-z,)-R(z, x1)1K(x1,4 

by applying i t  to f:(s’, z’) so that the part of k(x , ,  xo, s’) that contains w2(s’,  zo) cancels 
the other term containing w: in (A 32). We knew this result for the exact solution 
with the condition (A 29). Here we see that it holds for any xo, provided that the usual 
regularizations are applied. I n  particular, if A ( z ,  t )  = A(%*, t )  6(z-x*), i t  is very 
convenient t o  choose xo = x*. Keeping only the two first non-vanishing orders in t 
and E ,  we obtain 

f ( s ,  t )  = r m d x f O ( s , x )  -m [ 6 ( 2 - x 0 ) - ~ ( z , x 0 ) ]  [a(+o,t)-wZ(s,so) SO(L-U)A(zo, u)du] 
t 

+m +m 

- j :du( t  - u )  A@,, u)f-W dz f:(s, x) f., ds’ k(z, zo, s’) f:(s’, zo). (A 326) 

The last term in the right-hand side of (A 32b) contains the integral 
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The calculation of 8, can be regularized with the help of the identity 

cosh H ,  n-k 

coshk+2 H ,  p = l  
= C uF' cash [ H 1 - ( 2 p + k ) H o ]  

cash [ H l - ( 2 n + 1 ) H , ]  Gosh [ H 1 - ( 2 n + 2 ) H o ]  
coshk+l H ,  + coshkf2 H ,  + . . . +b:, 

where 

This formula can be proved by induction on n and k ,  which yields the recurrences 
a(k)  P + uLkJ1 = 2aLk-') ; a$& = 2( - l ) n  bk,fi ; bg + 2 b g ~ :  = bz - ,  ; with 60, = 1 and ahk) = 0. 
A quite-similar formula is obtained for the hyperbolic sines. They reduce to (A 7 )  and 
(A 8) for k = - 1 .  The identity (A 34) is to  be used (here for k = 0) as we did with 
(A 6) when we derived ~ ( z ,  2,). The contribution of the term 'without denominator' 
vanishes a t  the limit b = 0. The remainder yields 

1 d Xcosh r s i n  &--A sinh Xcos A 
8 , (A 35)  nh, ax- sin2 A -t sinh2 x 0 -  

where x= &r(x-xo)/h,, h = &r[h(z)-h,]/h,. Hence 8, goes to zero with p ( h ) ,  and we 
can write down the response (A 32)  to the source A(z,, t )  ~ ( x - z , )  as 

r+m l r t  r i m  

J-,, d x  
-! dx+$(s,z)e(z,x,) - du(t-u)A(x,,u) 

-m 1 !o 

Notice that the term containing 8, is of relative order t2,u(h). If we keep only the two 
first time orders, we have a response to A(x,, t )  b(z-x,) on a sloping bottom equal 
to that to A(x , , t )  [ 6 ( x - x O ) - ~ ( x , z 0 ) ]  on a horizontal one. It is easy to show that the 
two sources have the same area. For deriving (4.1) we have used this equivalence and 
replaced the two first orders of the time series by a cosine, obtaining in such a way 
a result that is similar with the 'intuitive' result obtained from ( 3 . 5 ) .  

A 6 .  Three-dimensional case 

From ( 2 . 3 )  or (2.12) we see that we have to solve 
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for the ‘direct’ term (separating the direct and the reflected terms is as in the 
two-dimensional case). Let us introduce the function 

y”(k, S, 2 0 ,  t )  = f ’ ( k ,  s ,  2 0 ,  t ) + w i ( k )  ( t - 7 )  f ( k ,  s ,xo ,  7) d7, 1: 
where wo(k)  is given by (3 .3) .  We obtain from (A 37)  the equation 

a bzkz]  [ sinh [ky] 

cosh [ k ( y + h , ) ]  t d u  sin [ w o ( t - u ) ]  

lim b+O { ( V f h ’ ( x )  &) r m d s  -m exp [ -2insx-- 4n 
k 

cosh [kh,] jo w0 U--h(z) 
x y”(k S , X O ,  t )  - g  

= ~ ( x - x , )  A(%,, t ) .  (A 38)  

The equation (A 38)  is formally similar to (A 4 ) .  It can be managed by the same 
method, provided that we get for 7 = exp [2insxo] sech [kh,] A(xo, t )  again the 
response A(xo, t )  [ 6 ( x - x o ) + ~ ( x , x 0 ) ] ,  where ((el( is O(,u(h)). Hence we have to  calculate 

where 

= n-l JOm du k-l sin [ku] Fk(u, y, xo) 

(SO that Fb(u, y, xo) = 2 Jomdk k sin [ k u ] f ~ ( k ,  y, x,)). Inserting (A 4 0 )  into (A 39)  

we get 
2nHb(x,xO) = { ( ~ + h ’ ( ~ ) ~ ) ~ , ~ ~ F b ( ~ , y , x o ) ~ o [ 2 n ~ ( u z - X ~ ) ~ ] ]  d a , (A 41)  

y--h(z) 

where X = x-xo. Let us now introduce the function 

The first two terms in (A 4 3 ) ,  which together constitute the ‘free’ part of Hb(x ,  x o ) ,  
say J17fb(x,xo), are equal to 

x [cosh [kh(z ) ]  + ih’(x) sinh [ k h ( x ) ] ,  (A 44)  
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SO that Hi(x, x0)  = 6(x-x,) +e(x ,  x0), which is the desired result. The integrated terms 
in (A 43) can be regularized and calculated by the methods introduced in the 
two-dimensional case. They yield higher-order terms. I n  the present paper, we use 

(A 45) mainly 

which yields the 'source' ~(x-z , )  - O(E),  and is therefore the zeroth-order solution. 
We also use a 'first-order' solution, which is meant as follows: gt2/h and h' are 
considered equivalent infinitesimal quantities of first order. Thus the three- 
dimensional equivalents of only the first two terms in (A 36)  remain, and, going to 
f ( k ,  s, xo, t ) ,  we obtain 

To(k, s, xo, t )  = exp [2insxo] sech [kh,] A(xo ,  t ) ,  

r t  

J ,  [2nrr(u2 - X2)1] 
(u2 - X2)t 

~ ( x ,  xo) = eo(x, xo)  +? jm du 
ho 1x1 

mu mA0 nu nAo 
u cosh ~ sin - -Xh'(x)  sinh - cos __ 

2h0 2h0 2ho 2 h o :  IA47) X , \  

7lA 7lU 
sin2 -3 -t sinh2 - 

2hO 2hO 

e0(x, xo) is given by (A 13).  Keeping only in E and in the other terms of (A 43) the 
terms that are O(h') we obtain 

where 

cash - N -- nu exp [-A (?)'I for u/ho 5 1 .  
2hO 7ru { 2h0 2h0 2h, ""3 4h 0 15 2h0 

nu nu 
f(u) = cosech2 - sinh _-- 

A 7. Well-posedness proofs 
(i) In  this sketch of a proof, we consider the finite domain obtained by making' h(x)  
go to zero for some large value of x ,  x = +a, with infinite derivatives up to and 
including the fourth order. We can continue this mathematical domain into y > 0 
by symmetry with respect to the x-axis. Let the whole boundary A? be parametrized 
by the curve abscissas. We assume that (1 + h'2(x) ) - iA(x)  = a(s) is twice differentiable 
and is continued by reflection, together with Laplace's equation. Thus we get a 
single-layer potential Y(x, y ) ,  which is an odd function of y:  

where r ( x ,  y ;  8') is the distance between any point (2, y )  of the domain and the point 
of abscissa s' on B. It follows from (2.1)-(2.4') that  the response a t  t = O+ is 
[a Y(x, y ) / a y ] y = o ,  which is related to  7 ( s )  through (A 45). The jump discontinuity 
theorem yields the equation replacing (2 .16) ,  and whose solution is ~ ( s ) :  

r a 

where a/av, is the normal derivative on 9 a t  the point of abscissa s. It is well-known 
that the kernel of this Fredholm equation is continuous (Courant & Hilbert 1962). 
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Hence the Fredholm alternative holds. One shows that the homogeneous equation 
has only the zero solution either by using the Dirichlet integral or by discarding 
directly the possibility of n as an eigenvalue (as in Courant & Hilbert). Hence the 
resolvent exists as a bounded operator, and T depends continuously on a. Besides, 
7 ( s )  is twice differentiable if a(s )  is, so that ( 3 Y / d y ) v - o  is well-defined. Notice that 
this derivation can obviously be used to define a numerical method for obtaining 
‘exactly’ the surface deformation at t = O + .  

(ii) Thus we have proved the well-posedness for a finite basin and the sudden 
approximation. But what about the general case! In  this paper we have seen that 
the regularized formulation can be managed by successive approximations in a way 
to give a solution that depends continuously on the data. However, the regularization 
trick is justified in one way only: we have proved that if there exists a solution q(x), 
and f ( 8 )  is multiplied by exp [-n b2s2],  with b -+ 0,  this f ( s )  can be determined as a 
solution of (2.13) and if  it  is of the form (2.16), then ~ ( x )  is a solution of (2.15). For 
an infinite basin we have neither proved the existence and uniqueness of a solution 
of (2.15) nor the uniqueness of a solution of the linear problem, two missing steps. 
On the other hand, our assumptions are very strong, and we suspect that  if the bottom 
is very irregular, with overhanging cliffs and holes in which the water can get 
uncontrolled accelerations, the motion cannot be irrotational. But our algorithms can 
give a rough approximation, as long as Assumptions A and B have some physical 
support. 
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